Algorithms for Positive Semidefinite Factorization
نویسندگان
چکیده
This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and j = 1, ..., n. PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size k = 1 + dlog2(n)e for the regular n-gons when n = 5, 8 and 10. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices A and B have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality A = B is required for all i).
منابع مشابه
Cholesky factorization
This article aimed at a general audience of computational scientists, surveys the Cholesky factorization for symmetric positive definite matrices, covering algorithms for computing it, the numerical stability of the algorithms, and updating and downdating of the factorization. Cholesky factorization with pivoting for semidefinite matrices is also treated. 2009 John Wiley & Sons, Inc. WIREs Co...
متن کاملChordal Graphs and Semidefinite Optimization
Chordal graphs play a central role in techniques for exploiting sparsity in large semidefinite optimization problems and in related convex optimization problems involving sparse positive semidefinite matrices. Chordal graph properties are also fundamental to several classical results in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and nonlinear op...
متن کاملLogarithmic barriers for sparse matrix cones
Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivati...
متن کاملWZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملLower bounds on matrix factorization ranks via noncommutative polynomial optimization
We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.07953 شماره
صفحات -
تاریخ انتشار 2017